If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-16x-40=0
a = 5; b = -16; c = -40;
Δ = b2-4ac
Δ = -162-4·5·(-40)
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{66}}{2*5}=\frac{16-4\sqrt{66}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{66}}{2*5}=\frac{16+4\sqrt{66}}{10} $
| -5.4+8x=7.4 | | 9=x6x | | 29=282-w | | (a+2)(a-1)=-4 | | (a+2)(a-3)=-4 | | 13x+2-4x=92 | | n/8=15/24 | | n/8=15/25 | | ×+2/5=y | | 50+x+x=82 | | 7x=5/4 | | (D²-64)y=0 | | 4^x+2^x*2-24=0 | | 32+x=42 | | 30=5xX10 | | t-(1-3t/2)/4-(2-t/4)/3=2 | | t-(1-3t/2)/4-2-t/4/3=2 | | p2-3p-28=0 | | p2+3p=28 | | 9=5−t/−5 | | 3m*7m=42 | | x+38=2688x | | 1,5x^2-12x+22=0 | | x–24=58;x=82 | | (x+17)/(3)-(20-x)/(2)=(5x-28)/(2)+9 | | 8x^2+44x-24=0 | | 8x+9x=6x+12-12x | | S²+4s+13=0 | | (2x-3)=x+1 | | 1/(x*x)=0,25 | | (2x)×(2x+14)×(6x+6)=360 | | 8+3x=2x+10 |